
AUTOMATED GENOME INTERPRETATION AS A UTILITY 

TO PRIORITIZE VARIANTS FOR CLINICAL AND 

STATISTICAL FOLLOW-UP 

Xiaodi Wu 

A thesis submitted to the Department of Biology 

in partial fulfilment of the requirements for the degree of 

Bachelor of Arts 

Harvard University 

Cambridge, Massachusetts 

March 2009 



Abstract 

Recent developments in genome sequencing technology have moved closer to ushering in 

an era of unprecedented amounts of genetic information. However, data linking genetic variants 

to traits are currently quite incomplete, and efforts to interpret the four currently published ge-

nomes have not yielded many results of note. In this project, I present an interpretation utility 

that draws upon several data sources and a substitution matrix-based predictive algorithm to pri-

oritize variants for follow-up. Application of this utility to existing genomes replicates pheno-

types claimed by previous authors but also casts doubt on their significance, in addition to sug-

gesting additional phenotypes. While demonstrating weaknesses in the underlying data, these 

results are a step forward in personal genome interpretation and represent part of an evolving 

bioinformatic approach to extracting functional predictions from large sets of genetic variants. 
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Introduction 

Alongside the release of individual genomes for J. Craig Venter,1 James D. Watson,2 and 

two anonymous individuals,3, 4 recent efforts have focused on methods to produce higher-quality 

genome sequences more cheaply, a movement that will lead eventually to the general availability 

of personal genomes for a modest cost.5 For clinicians and scientists, the arrival of these data will 

usher in an era of unprecedented quantities of information about human genetics.  

Yet the availability of ever-increasing amounts of sequence data alone will not be suffi-

cient to bring about greater insight into individuals’ genetic constitution or to promote a better 

understanding of how such information can be used responsibly. In addition to lowering the cost 

of producing a complete genetic sequence for individuals, efforts are under way to provide in-

sight into their microbiome,6 VDJome,7 and other such “-omes.” These sources of information 

hold promise in bridging the gap between genetic and environmental factors by providing quanti-

tative data on the individual’s multicellular environment. 

Furthermore, studies continue to investigate disease-causing alleles and their mecha-

nisms. The data produced by studies linking genotype and phenotype are essential, of course, for 

evidence-based interpretation of any individual’s genetic sequence; today, these data are signifi-

cantly incomplete even in the coding regions, the best-studied fraction of the human genome.8 

Traditional studies of genotype–phenotype associations have generally examined a handful of 

genes and traits due to cost and technical limitations. While such studies have been relatively 

successful at elucidating the genetic bases of diseases caused by a single locus with classical 

Mendelian inheritance (so-called “Mendelian diseases”), finding reproducible results has been 

less successful for more complex traits.9 More recent studies use haplotype-tagging single nu-
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cleotide polymorphisms (htSNPs) as statistical proxies for neighbouring variants, making use of 

linkage disequilibrium in order to examine a wider array of genotype–phenotype correlations. 

Since htSNPs have non-trivial minor allele frequencies in the population, the result has been the 

identification of many somewhat common alleles conferring modest increased risk for various 

diseases, often difficult to replicate.10 Hence, a naïve interpretation based on the presence or ab-

sence of these genomic variants is guaranteed (statistically) to generate a plethora of “risk al-

leles” for each individual that have questionable relevance after correcting for multiple hypoth-

esis testing. The possibility of triggering potentially invasive or harmful interventions based on 

false positives renders the approach undesirable for clinical use, while the inability to ascertain 

disease-causing loci precisely due to the use of htSNPs as proxies also presents limitations for 

study in the laboratory setting. 

This project builds on these studies of genotype and phenotype to explore our under-

standing of what individual genomes can reveal about traits. I examine sources of information 

available for genome interpretation, present a utility that draws on these sources to interpret per-

sonal genomes, and analyse the effectiveness of methods employed in such interpretation. The 

motivations for this project can best be made clear first through a broad survey of five sequen-

cing methods to explain the current state of genome sequencing, then through an overview of 

existing methods and resources used in genome interpretation. 

Sequencing. The classical Sanger method of DNA sequencing is based on the use of la-

belled chain-terminating dideoxynucleotide triphosphates (ddNTPs). These are randomly in-

corporated into a growing DNA strand complementary to the template of interest, separated by 

gel electrophoresis, and visualized.11 As the accuracy of Sanger sequencing drops after several 

hundred base pairs (bp), techniques for splitting apart longer sequences of interest for sequencing 
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and then reassembling these fragments computationally are required. The Human Genome Pro-

ject elected to address this issue by using hierarchical shotgun sequencing; in this procedure, the 

genomic DNA was split into large-insert clones (between 100–200 kilobases); each selected 

clone was then individually sequenced by random fragmentation into overlapping Sanger reads 

later reassembled computationally (a strategy known as the shotgun method).12, 13 By contrast, 

Venter’s genome was produced using whole-genome shotgun sequencing, where the entire ge-

nome is fragmented for Sanger sequencing without the use of large-insert clones. This process 

produced approximately 32 million reads for Venter’s genome which, when assembled, yielded 

an average of 7.5-fold coverage.1 

To reduce costs, modern high-throughput systems attempt to increase output using alter-

native chemistries that afford massive parallelism and cyclic data capture. Pyrosequencing, as 

developed by 454 Life Sciences, is a cyclic sequencing-by-synthesis method that does not use 

chemically bound fluorophores. Rather, the pyrophosphate released upon nucleotide incorpora-

tion is detected by the use of a luciferase; to correlate light release with a particular base, the four 

sets of deoxynucleotide triphosphates (dNTPs) must be added individually between washing 

steps.14, 15 Watson’s genome was produced in this manner, with over 24 billion bases generated 

in 100 million reads; 88% of these reads aligned to the reference sequence to yield an average of 

7.4-fold coverage across the genome.2 Note that reads produced by Sanger sequencing, which 

can exceed 800 bp, are generally longer than 454 reads, which can extend up to 400 bp. 

The fluorescent sequencing method available from Illumina uses labelled reversible nu-

cleotide terminators to interrogate DNA. Fragments of DNA tethered to a glass surface undergo 

rounds of amplification by polymerase chain reaction, after which sequencing primers and rever-

sible dNTP terminators are introduced. When unincorporated dNTPs have been washed away, 
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the identity of the incorporated base is revealed by laser excitation of the bound fluorophore 

(unique for each base). The terminating group and fluorophore are then cleaved for additional 

cycles of dNTP incorporation and laser excitation;14 according to genome centres, this process 

can be repeated for as many as 110 cycles. Two subsequently completed whole genomes make 

use of this next-generation sequencing technology: one of an unidentified Yoruba Nigerian male 

(HapMap NA18507), in which ~4 billion paired 35-base reads covered 99.9% of the reference 

sequence at ~40-fold average coverage,3 and one of an unidentified Han Chinese male, in which 

3.3 billion 35-base reads (some paired, some single) covered 99.97% of the reference sequence 

at ~36-fold average coverage.4 

Sequencing-by-ligation protocols use the discriminating capacity of ligases rather than 

polymerases to interrogate DNA. Briefly, synthetic anchor primers are first hybridized to immo-

bilized DNA, after which populations of labelled degenerate oligomers are introduced to be li-

gated. The identity of a particular position (or positions) in the oligomer is correlated with its at-

tached fluorophore, so the identity of the corresponding position on the immobilized DNA can 

be queried to the extent that the ligase is sensitive to complementarity; this ligase sensitivity is 

sufficiently accurate for sequencing purposes only up to a certain distance between the query po-

sition and ligation junction. One protocol, used in the Polonator sequencing instrument, repeats 

rounds of single ligations by stripping the anchor primer and probe, starting anew using probes 

that have been labelled to query different positions.16 In the Applied Biosystems (ABI; now Life 

Technologies) SOLiD protocol, 8-bp oligomers are used that consist of three degenerate bases at 

one end but three universal bases at the other, which are cleaved after each round of ligation to 

expose a 5′ phosphate for further rounds of extension by ligation; this permits cyclic querying of 

every fifth base. Furthermore, these oligomers are labelled according to the combination of bases 
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at the fourth and fifth positions (16 combinations), increasing error detection possibilities as two 

adjacent bases are queried simultaneously.14 ABI has claimed sequencing of a Yoruba Nigerian 

male (HapMap NA18507) using this technology, though as of this writing no report has been 

published presenting the genome. Meanwhile, Complete Genomics has announced plans to offer 

US$5000 human genome sequencing based on proprietary sequencing-by-ligation approaches.17 

Finally, nanopore sequencing is a technology still under development that eschews the 

use of either polymerases or ligases during readout. In this method, unlabelled RNA or single-

stranded DNA (ssDNA) molecules are driven electrophoretically through a nanoscale pore, 

which is sufficiently small that characteristic changes in ionic current caused by translocating 

nucleotides can be used to distinguish between the differently sized bases. Unfortunately, it has 

been found that the rate at which ssDNA polymers translocate through a nanopore under an elec-

tric potential is too high to resolve individual nucleotide identity via ionic current.18 One attempt 

to surmount this limitation involves the use of an exonuclease to cleave individual nucleotides 

from ssDNA polymers in sequence; when the exonuclease is appropriately attached to the 

nanopore, these liberated deoxynucleotide monophosphates (dNMPs) have a high probability of 

translocating through the pore in the order in which they are cleaved. Recently, one group re-

ported a successful implementation of single-molecule nanopore sequencing with an average ac-

curacy of 99.8%.19 

Here, I have given only a very brief treatment of some particular sequencing technologies 

involved in recent sequencing efforts, and have omitted techniques for DNA amplification prior 

to these readout chemistries as well as algorithms for image processing that follow; both are 

areas of active research. Differences in technology have an impact not only on cost, but also on 
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the kinds of error encountered and consequent strategies for evaluating sequence quality, among 

other considerations. 

Several ambitious projects have been announced to sequence large numbers of individu-

als using some of these next-generation sequencing technologies. An international consortium 

announced in 2008 the launch of the 1000 Genomes Project, with the aim of providing more de-

tailed and biomedically relevant information on genetic variants than is available from current 

sources.20 With a focus on the human exome (coding exons of the genome), the Personal Ge-

nome Project (PGP) has completed a pilot effort with 10 individuals and is developing protocols 

to sequence 100,000 participants. Analysis of this sequence information in conjunction with per-

sonal medical records will be undertaken with the aim of better connecting traits to both genes 

and environment.21 

Interpretation. With the impending arrival of a large number of genomes, sequencing 

projects have also turned to efforts to interpret these data, systematically and—because manual 

efforts are prohibitively laborious—with automated aids. The first attempts at analysing individ-

ual genomes for phenotype have been, in general, unimpressive. 

Levy et al. described several loci in Venter’s genome examined (apparently manually) 

for phenotype. They determined that the donor is neither affected nor a carrier for Huntington 

disease (HD), and has alleles associated with tobacco addition, increased risk for heart disease, 

decrease risk for heart disease, and a small number of other traits.1 Subsequently, a follow-up 

report by Ng et al. examined systematically Venter’s variants in disease genes by consulting a 

table in dbSNP mapping phenotypes in Online Mendelian Inheritance in Man (OMIM) to dbSNP 

rs IDs, finding seven of note. However, they found all seven to be common (minor allele fre-

quency (MAF) > 0.05), functionally neutral, or both.22 
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Wheeler et al. described 11 single nucleotide polymorphisms (SNPs) in Watson’s ge-

nome matching disease-causing or other recognizable phenotypes based on consultation with the 

Human Gene Mutation Database (HGMD), though Watson exhibits none of these phenotypes.2 

(Note that while SNPs have been traditionally defined as benign single base changes, or those 

with a minimum allele frequency of 1%, current usage with respect to individual genomes has 

not discriminated on the basis of allele frequency or function.) Ultimately, the Wheeler study 

showed little information of clinical value, and at least one observer suggested that reliable pre-

dictions from genome sequences are several years away.23 

In their analysis of the Han Chinese male, Wang et al. surveyed the same database table 

used by Ng et al. and found one mutation for a recessive deafness disorder for which the subject 

is claimed to be a carrier. A search of alleles linked to complex diseases from curated data sour-

ces additionally revealed several predisposing alleles for tobacco addiction, Alzheimer disease 

(AD), and diabetes, among others; the authors revealed that their subject is a heavy smoker.4 By 

contrast, Bentley et al. included no summary of phenotype inferences for their report on the se-

quence of the Yoruba Nigerian male.3 

Subsequent to the publication of these four genomes, two groups with as yet unpublished 

individual genomes have used this project’s utility as an interpretative aid for SNPs; we have 

named this utility “Trait-o-matic.” Below, I survey some resources used in genome interpreta-

tion—namely, the reference sequence and five databases—and very briefly discuss a handful of 

predictive algorithms related to the task. 

As the Human Genome Project produced the first largely complete sequence of the hu-

man genome, all four published genomes have been aligned against this reference sequence, and 

variants lists are produced from comparisons with it. This reference sequence, now curated by 
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the Genome Reference Consortium (GRC), is available from the National Center for Biotechnol-

ogy Information (NCBI) and other international public databases, the most recent release being 

build 36.3 (March 2008). Point increments of NCBI reference build numbers have indicated an-

notation updates (protein alignments, repetitive sequence masking, etc.) or addition of alternative 

assemblies without changes in the reference genome assembly; hence, a particular set of coordi-

nates given for build 36.1 (March 2006) refers to the same sequence in build 36.3. 

It is to be noted that the reference sequence itself is haploid and based on a composite of 

tissue lines so that it is not the sequence of any particular (half-)person.24 Donors were recruited 

via newspaper advertisements in 1997, and libraries were first constructed from one male (RPCI-

11) and one female (RPCI-13); as the experiment was double-blind, additional samples could not 

be obtained from RPCI-11 when necessary.25 Other libraries were used in addition to these to 

construct clones for sequencing, but it is known that most clones were drawn from the RPCI-11 

library;12 consequently, the reference sequence is largely that of a male from Buffalo, New York. 

Still, the current sequence is clearly neither a true reference sequence, as it is a patchwork of se-

quences from different individuals, nor a consensus sequence, as it contains rare alleles. 

In the capacity in which we (and others) use this reference, it would be optimal to have 

annotations that describe loci where the reference contains a rare or potentially deleterious allele. 

Others have argued that the genomes of James D. Watson and other generally healthy individuals 

should be used to improve the reference sequence directly, with the aim of producing a consen-

sus sequence representing only major alleles.22 The use of a sequence that consistently contains 

alleles most common in the population does necessarily simplify the task of identifying minor 

alleles when comparing genomes. However, as our ultimate aim is to identify not minor alleles 

but disease-associated alleles, editing the reference sequence to produce a consensus would not 
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be the most productive approach. Rather, direct editing would obscure the distinction between 

minor and disease-associated alleles, and the resultant data would remain unable to (a) represent 

actual allele frequency data, or indicate whether alleles appear to be in Hardy-Weinberg equilib-

rium, (b) describe situations where a heterozygous genotype is most common in the population 

due to balancing selection, or (c) accommodate differences due to population structure without 

the proliferation of multiple reference sequences representing various ancestries. 

Instead, the revised Cambridge reference sequence (rCRS) of human mitochondrial DNA 

(mtDNA) demonstrates an alternative approach, where sequencing errors but not rare poly-

morphisms have been corrected, to the extent that correction would not affect compatibility with 

historical numbering.26 Seven rare polymorphisms are noted separately from the sequence, al-

lowing the rCRS to remain unchanged indefinitely and without consideration of population struc-

ture because it is not a consensus sequence meant to reflect allele frequencies in the population. 

Those seeking to compare mtDNA from particular populations may still align against a common 

reference, while data on the alleles most common for those populations need to be consulted 

separately. 

It is likely that, with refinements in sequencing technologies, the use of the reference se-

quence as a scaffold for genome assembly will become outdated. Currently, genome-wide sur-

veys of large-scale structural changes are typically performed after alignment of sequence data 

against the reference,3, 4 and targeted de novo assembly of reads in regions with evidence of 

structural changes is carried out where necessary to investigate these changes in detail. When 

entire genomes are assembled de novo, all structural changes are represented in the consensus 

sequence without the need for an independent step to survey their presence, offering an advan-

tage over the current workflow and removing one key use for the reference sequence. However, 
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some standard will still be necessary in order to express differences between genomes. For vari-

ants not near coding regions, it is of course necessary to give coordinates and sequences with re-

ference to some genomic contig; for those in or near coding regions, well-developed standards 

for notation provide options for representing changes with respect to a genomic contig, coding 

sequence, or (where applicable) RNA or polypeptide sequence.27 Whatever becomes used as a 

reference for comparison, it will remain necessary to consider the presence or absence of particu-

lar alleles in that reference to understand fully what is implied by a deviation from it. I analyse 

some properties of the current reference sequence as part of this project; though it may be that 

future genomes will use a different reference, a similar exercise would be productive for any 

such sequence. 

Authors of published genomes have used several sources in addition to the reference se-

quence for interpretation. Reports presenting all four genomes have made extensive use of an 

NCBI database known as dbSNP to classify variants as previously observed or “novel.” 

Launched during sequencing efforts for the Human Genome Project, dbSNP functions as a re-

pository where individual submissions, represented by “ss” IDs, are collated into references for 

each variant designated by “rs” (reference SNP) IDs.28 Besides SNPs, dbSNP accepts small in-

dels, microsatellite repeats, and other types of variation regardless of frequency,29 and it displays 

genomic locations, population frequencies, and other information (principally in the form of 

cross-references to federated databases) alongside user submissions. Although it is possible to 

access dbSNP using a web interface or to query dbSNP programmatically for small amounts of 

data on particular variants, these options are not practical for use on larger datasets. For millions 

of SNPs, one option is to retrieve the entire database in a structured XML format to be parsed 

and stored for local use, and another is to replicate the entire database as it is stored at NCBI for 
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local use. Both represent high barriers to entry because of the size and complexity of dbSNP, as 

well as the use of proprietary features from Microsoft in its internal database schemas. The Uni-

versity of California, Santa Cruz (UCSC) provides, among other bioinformatics resources, one 

method to work around these limitations by offering parsed tables that summarize genomic lo-

cation and inferred function for each dbSNP rs ID.30 Corresponding to the most recent dbSNP 

build (129; April 2008) is the UCSC table “snp129.” 

Ng et al. have reported in their analysis of Venter’s genome that most changes likely to 

affect protein function tend to be heterozygous, rare, or novel.22 While zygosity is determined 

based on each individual’s data, and novelty from presence or absence in dbSNP, other resources 

need to be consulted for data on allele frequency in the population. In 2002, the International 

HapMap Consortium began cataloguing a collection of SNPs across the genome in individuals 

from four geographically distinct populations; the purpose was to construct a haplotype map 

(HapMap) in order to enable the use of subsets of these SNPs as proxies.31 In addition to linkage 

disequilibrium (LD) data, the HapMap is a valuable source for allele and genotype population 

frequencies. Data from phase I of the project, published in 2005, included over 1 million SNPs; 

additional data comprising over 2 million additional SNPs were published in 2007 as part of 

phase II.32 The most recent HapMap draft as of writing is release 27 (February 2009), which con-

tains information collected from 1115 individuals in 11 populations when pre-release data from 

phase III genotyping is included. HapMap frequency data are also integrated into dbSNP, but are 

more difficult to parse from dbSNP than in the format retrievable directly from the International 

HapMap Consortium. 

It has been mentioned that some authors interpreting individual genomes have used a 

database table in dbSNP linking phenotypes in OMIM to dbSNP rs IDs. Prior to this project, this 
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table was the most complete freely available and machine-readable catalogue of allele–

phenotype correlations, known as “OmimVarLocusIdSNP” and (as of dbSNP build 127, re-

trieved August 2007) mapping 1391 rs IDs to 695 OMIM articles. OMIM itself, the online 

counterpart to a print publication known as Mendelian Inheritance in Man (MIM), is a free-text 

catalogue of genotype–phenotype information which as of 2007 included over 11,000 gene en-

tries and 6000 phenotype entries. The resource includes both Mendelian and complex pheno-

types, and lists allelic variants for each gene deemed to be of interest but not all variants that 

have been associated with a phenotype.33 Hence, OMIM represents an interesting and extensive 

(though intentionally incomplete) collection of allele–phenotype data, of which only a small sub-

set has been parsed into a computer-readable format. As part of this project, I construct a data-

base table by parsing all nsSNP annotations in OMIM. 

It has also been mentioned that Wheeler et al. use HGMD as a data source for mutations 

causing disease. This database, maintained at Cardiff University, extracts information from hun-

dreds of journals and locus-specific databases (LSDBs), with one reference to the literature pro-

vided for each entry.34 All published reports of heritable, nuclear lesions responsible for inherited 

disease or associated with disease are eligible for inclusion,35 and the database is likely to be the 

most complete collection of machine-readable allele–phenotype associations currently available. 

Others have in fact attempted to compare the completeness and accuracy of OMIM and HGMD, 

finding that both databases contain useful mutations but also inconsistencies;36 these conclusions, 

however, were not well accepted by HGMD authors.37 Complicating such comparisons, HGMD 

maintains two simultaneous releases: one set of up-to-date data (HGMD Professional) is avail-

able for purchase and can be downloaded for local use, while a subset of these data (excluding 

the most recent additions and a fraction of older entries) is freely available for academic use but 



13 

can only be accessed through a web interface. In this project, I use a purchased instance of 

HGMD Professional 7.1 (March 2007), which contains 44,776 nsSNPs; the most recent version 

as of writing (Professional 2008.4, December 2008) contains 48,343 nsSNPs.  

Furthermore, an unpublished resource known as “SNPedia” presents SNPs and disease 

associations in a “wiki” format. These data can be edited by users, but are chiefly maintained by 

two individuals. Many SNPs available on SNPedia are found on microarrays used by direct-to-

consumer services such as 23andMe, deCODEme, and Navigenics. Like reports offered by these 

services, SNPedia describes relative risk estimates for many genotypes listed. These estimates 

are of limited reliability, however, partly because interactions between an arbitrary number of 

variants is not well characterized. It is conceivable, for example, that a person found with two 

SNPs associated with increased risk for a disease may actually have reduced risk for that disease. 

Only at a time when the sample size is sufficiently large (i.e. the number of genomes analysed) 

will it be possible to calculate meaningful relative risk values for a large array of phenotypes. 

Because SNPedia covers many loci analysed by direct-to-consumer services, this re-

source also offers an interpretation utility known as “Promethease,” which accepts genotype data 

retrieved from these services and queries SNPedia for information on each genotype. Despite the 

appearance of a desktop application, Promethease transmits users’ genotype data to SNPedia and 

requires approximately two hours to complete unless the user provides an optional monetary 

payment to reduce runtime. Although information from SNPedia can be useful, particularly when 

comparing complete genome data to microarray data, we are unable to use Promethease due to 

pay-per-run limitations; instead, I retrieve and parse SNPedia data into a table as part of this pro-

ject. 
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Figure 1. Prediction decision tree for SNPs. Adapted from Plumpton and Barnes.38 

Finally, as not all alleles have been sufficiently studied or even observed, it is important 

that interpretation tools are capable of predicting to some extent the effect of a novel mutation. 

Several considerations can be used to determine the potential effects of a SNP, beginning with 

whether or not it exists in an exon. Non-exonic SNPs and SNPs in untranslated regions may dis-

rupt promoter or transcription factor (TF) binding, or have effects on RNA folding, splicing, or 

microRNA (miRNA) binding (Figure 1).38 Several algorithms for detecting regulatory 

elements39, 40 and several databases that catalogue these elements41, 42 are available. 

 For a first implementation, however, I have chosen to focus prediction on nsSNPs. Sev-

eral existing amino acid substitution prediction tools are widely used to infer nsSNP impact on 

protein function. SIFT (Sorting Intolerant From Tolerant) attempts to distinguish deleterious and 

benign alleles using protein sequence homology, assigning scores that take into account the 

amino acid change and the degree to which the amino acid position is conserved. Scores given 

are between 0 and 1, representing the normalized probability that a change is benign; by default, 
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scores less than 0.05 are considered deleterious, although this threshold can be adjusted.43 

PolyPhen is another tool that attempts to distinguish deleterious and benign alleles; in addition to 

sequence conservation, this algorithm considers the three-dimensional structure of the affected 

protein and consults annotations of important residues in the protein database Swiss-Prot.44 Un-

like SIFT, output from PolyPhen simply places each amino acid into one of four categories (be-

nign, possibly damaging, probably damaging, unknown). Besides SIFT and PolyPhen, several 

other prediction tools using similar methods have also been published.45 

A chief disadvantage of SIFT, PolyPhen, and related tools concerns the computational re-

sources required for their operation. While precomputed tables for dbSNP entries overcome this 

issue for previously known SNPs, predictions for novel mutations still need to be calculated 

using multiple alignments and, in the case of PolyPhen, three-dimensional modelling. Since it 

would be difficult to evaluate all novel SNPs in this manner within our computational limita-

tions, I attempt to use a simpler algorithm in this project to predict the effect of nsSNPs, and I 

evaluate the loss of accuracy incurred as compared to SIFT and PolyPhen. 

For this project, I have pulled together sequences, databases, and algorithms to create 

Trait-o-matic as a utility to prioritize variants for manual follow-up. I have also participated in a 

study of methods to limit Trait-o-matic results to genes available for diagnostic sequencing, and 

in the application of Trait-o-matic interpretation to PGP partial exomes; reports on both efforts 

are forthcoming. Here, I present the creation of Trait-o-matic itself and attempt to evaluate the 

effectiveness of this utility in comparison with existing methods. 



16 

Methods 

Sequence alignment and variant identification. Input data for early software proto-

types were retrieved from publicly released data available from the NCBI Trace Archive. 

Sequencing reads of approximately 100–300 bp each were available for James D. Watson and J. 

Craig Venter, and were aligned using BLAT.46 Subsequently, additional data emerged listing all 

variants identified in these genomes, obviating the need to align sequences. The genome se-

quence for an unnamed Han Chinese individual was also published with variant data, while vari-

ant data corresponding to the publicly released genome of an unnamed Yoruba Nigerian individ-

ual were obtained via correspondence with the authors of that study. Variant data generated as 

part of the Personal Genome Project were produced by Solexa (now Illumina) sequencing and 

were aligned using MAQ.47 

The algorithm used to identify variants is left to each data source. For example, Venter’s 

genome includes short insertions and deletions, while Watson’s genome lacks this data. Due to 

short reads, Solexa reads mapped by MAQ generally lack insertions and deletions. Data provided 

for Watson, Venter, and the unnamed Han Chinese male were in a common format known as 

GFF, though each file had its own idiosyncrasies. Using Python, I wrote scripts to convert all 

data formats into a common GFF format, and subsequent analysis steps all accept this common 

format as input. 

Information extraction. As previously discussed, a table from dbSNP incompletely 

maps OMIM alleles to dbSNP rs IDs. To extract a more complete set of information, I imple-

mented a script in Python capable of extracting non-synonymous single amino acid changes from 

the OMIM full text. This led to the creation of a database table with over 11,000 entries, 

representing a much larger set of OMIM allelic variants. These data are not strictly a superset of 
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senting a much larger set of OMIM allelic variants. These data are not strictly a superset of the 

dbSNP table, however, as certain variants either have incorrect information in the text or are 

compound mutations. 

I implemented a script to extract the reference allele for each nsSNP in dbSNP (build 

129) to examine reference alleles that appear in OMIM. An attempt using dbSNP tables failed to 

produce results because a SQL query joining separate database tables to retrieve all relevant 

fields could not be evaluated within the computational resource limits encountered. A second 

script made use of dbSNP data retrieved from UCSC which contained all relevant fields in the 

same table (“snp129”). 

I implemented another script to extraction data from SNPedia via the MediaWiki API. 

Structured markup was parsed for information about genotypes and their corresponding effects, 

and links to PubMed literature references were isolated from the free text and recorded as ac-

companying references. Where descriptions of effect specified degree but not condition (i.e. “in-

creased risk” instead of “increased risk for [disease]”), free text was parsed for links preceded by 

the text “associated with” or “association with”; where found, the accompanying text was ap-

pended to the effect description. Where descriptions of effect suggested that a genotype was as-

sociated only with an “average,” “common,” or “normal” phenotype, that particular genotype–

phenotype pair was discarded. Output data were then manually edited for spelling and consis-

tency. I implemented an accompanying script to format the edited data (~1500 entries) for inser-

tion into a database table, with an optional flag to output only those entries with genotypes ho-

mozygous for the reference allele. 

Subsequently, I implemented a script to insert HapMap allele frequency data into a data-

base table, summing allele counts for populations of related geographic origin. For example, al-
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lele frequencies for East Asians were aggregated from HapMap data for two Chinese populations 

(CHB, CHD) and one Japanese population (JPT). Aggregation was intended to maximize the 

HapMap frequency data available for each aggregated region. 

Phenotype inferences. Trait-o-matic queries several databases to retrieve information for 

each variant. I implemented this functionality in a set of scripts written in Python. 

A fundamental set of functionality was first constructed as a “utils” library. Portions of 

this library drew from pre-existing open source code; most notably, a selection of code written in 

C by W. James Kent, then partially ported to Python as part of the Pennsylvania State University 

“Galaxy” project, implements functionality to read and write efficiently from a compressed se-

quence format known as “2bit,” by which the entire reference genome can be represented in ap-

proximately 700 MB on disk. 

Above this foundation, I created Python scripts that query the necessary databases and 

perform scoring and filtering on the data provided to round out the utility’s “core” functionality. 

These scripts can be invoked via the command line, and are also exposed by a Python script that 

implements an XML-RPC server, which responds to XML-formatted requests transmitted over 

HTTP. In addition to core functionality, I implemented a web interface to permit users to view 

sample data, upload data to the server, and retrieve results in sortable tabular format. This inter-

face passes data to the core via XML-RPC calls; separation of functionality allows the outward-

facing web components to be located separately from the core utility, thus making any future ne-

cessity to run many interface or core instances in parallel much easier to implement. 
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Results 

Data flow. I have constructed Trait-o-matic as a utility that finds, for each SNP: (a) the 

reference allele at that locus, and whether it is a previously known SNP in dbSNP (build 127); 

(b) whether it is a SNP associated with disease, as listed in OMIM, HGMD (Professional 7.1), or 

SNPedia; and (c) if the SNP is contained within a coding region, what amino acid change is pro-

duced if it is non-synonymous, and whether the change is conservative (Figure 2). This informa-

tion is presented in sortable tables separated by data source, with highlighting for rare alleles 

(frequency < 0.05) and alleles of unknown frequency. Total processing time using one process 

for ~3 million SNPs is approximately six hours. 

 

Figure 2. Trait-o-matic data flow. SNPs are checked against the reference genome and dbSNP for 
additional annotations before being filtered through SNP-based sources (left) and through a nsSNP 
filter, followed by amino acid-based sources (right). Matrix-based scoring not shown; dashed lines 
are not yet implemented. 
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As OMIM and HGMD data are stored in gene and amino acid coordinates, only nsSNPs 

are queried against these datasets, and the amino acids corresponding to a given SNP are calcu-

lated by a script that translates DNA sequences in the appropriate frame after consulting a data-

base table that describes coding sequence locations (UCSC table “refFlat”). Comparison of the 

Trait-o-matic function inference algorithm against dbSNP revealed an error in the dbSNP algor-

ithm whereby amino acids encoded across a splice junction may be incorrectly reckoned. In 

rs9370096, for example, a C→T mutation in coding strand of the polycystic kidney and hepatic 

disease 1 (PKHD1) gene produces a cysteine residue. While the third letter of the corresponding 

codon is located at the beginning of exon 22, the dbSNP algorithm apparently ignores the splice 

junction and proceeds incorrectly into the intron, reading [C/T]GG instead of [C/T]GC. Genetic 

code redundancy shields the effect of this error in the case of the C allele but not the T allele, 

with the result that dbSNP gives the amino acid change as R760W instead of R760C (Figure 3). 

There is likely to be a small but appreciable number of SNPs in dbSNP systematically affected 

by this error. As these data also happen to be difficult to parse from dbSNP sources, Trait-o-

matic makes no use of dbSNP amino acid calculations and instead relies entirely on its own al-

gorithm. 

 

Figure 3. dbSNP incorrectly calculates amino acid changes for codons split by splice junctions. 
Differences arise between dbSNP and Trait-o-matic function inferences due to erroneous use of 
intron sequences by dbSNP. Top, dbSNP and Trait-o-matic function inferences for rs9370096; 
middle, excerpt of coding strand nucleotide sequence for PKHD1 near rs9370096 (blue); bottom, 
corresponding amino acid sequence. 
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Proof-of-concept genomes. Trait-o-matic interpretation was applied to the genomes of 

James D. Watson, J. Craig Venter, the Han Chinese male (“YH”), and the Yoruba Nigerian male 

to evaluate the effectiveness of Trait-o-matic procedures and to find variants of interest. 

Variant information retrieved for some genomes show discrepancies with published 

claims. Of Watson’s 3,322,093 claimed SNPs, 2,060,544 (62%) were present in the GFF data file 

retrieved from ‹http://jimwatsonsequence.cshl.edu/› in December 2007. Of these, 6602 were de-

termined to be nsSNPs by Trait-o-matic, 62% of the published claim of 10,569, including 9 of 11 

SNPs claimed to match mutations in HGMD that cause disease or other phenotypes. Approxi-

mately 11% of these 6602 nsSNPs were not found in dbSNP (“novel”). Of Venter’s 3,213,401 

claimed SNPs, 3,074,686 (96%) were present in the GFF data file retrieved from 

‹http://huref.jcvi.org/› in September 2007; 761,148 more SNPs were retrieved from the same 

source one year later. In 2007, 6428 nsSNPs were designated by Trait-o-matic, 105% of the pub-

lished claim of 6114; subsequently, 10,690 nsSNPs were designated from 2008 data, 103% of 

the published claim of 10,389. Of these 10,690 nsSNPs, ~10% were novel. 

For both anonymous genomes, 100% of claimed SNPs were available from supplemental 

data (YH data retrieved from ‹http://yh.genomics.org.cn/›, Yoruba data retrieved via correspond-

ence with authors). However, Trait-o-matic retrieved 8742 nsSNPs from YH data, 24% more 

than the published claim of 7062. Subsequent examination revealed that Wang et al., authors of 

the original data, had already labelled 8166 SNPs as nonsynonymous in the retrieved file, 16% 

more than their own published claim. 8128 of these 8166 nsSNPs (99.5%) were among the 8742 

designated as such by Trait-o-matic. Manual follow-up on a random subset of the remaining 38 

shows a mixture of SNPs where: (a) the coding sequence claimed by Wang et al. has been per-

manently suppressed in NCBI databases due to insufficient evidence; (b) dbSNP and Trait-o-
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matic agree that the SNP is synonymous; or (c) the claimed exon is absent in the table of coding 

sequences (“refFlat”) consulted by Trait-o-matic, presumably because it belongs to a suppressed 

isoform. Conversely, 11 of the 8742 nsSNPs designated by Trait-o-matic were erroneously label-

led as synonymous by Wang et al. because these SNPs are silent in at least one coding sequence 

but nonsynonymous in at least another (data not shown). The remaining 603 nsSNPs designated 

by Trait-o-matic but not Wang et al. were annotated as non-coding by the authors, likely reflect-

ing the use of an older dataset for coding sequence locations. Again, ~11% of nsSNPs retrieved 

by Trait-o-matic were novel for YH. For the Yoruba genome, Trait-o-matic identified 9650 

nsSNPs, ~20% of which were novel, significantly higher than the remaining genomes and con-

sistent with expectations of greater genetic diversity among African populations. 

Table 1. nsSNPs in four published individual genomes, analysed by Trait-o-matic. All genomes 
show 45–48% homozygous nsSNPs in dbSNP, with the exception of Watson, for which only 62% 
of the claimed quantity of data were retrieved; of homozygous SNPs, C and G consistently out-
number A and T. 

Watson dbSNP Novel Total 
A/A or T/T 469 48 517 

C/C or G/G 719 27 746 
Heterozygous 4661 678 5339 

Total 5849 753 6602 
 

Venter dbSNP Novel Total 
A/A or T/T 1446 63 1509 

C/C or G/G 2107 113 2220 
Heterozygous 6046 915 6961 

Total 9599 1091 10690 
 

YH dbSNP Novel Total 
A/A or T/T 1487 41 1528 

C/C or G/G 2261 30 2291 
Heterozygous 4035 888 4923 

Total 7783 959 8742 
 

Yoruba dbSNP Novel Total 
A/A or T/T 1312 73 1385 

C/C or G/G 2152 75 2227 
Heterozygous 4265 1773 6038 

Total 7729 1921 9650 
 

Consistent with previous reports,2, 22 nearly half of known nsSNPs are homozygous in 

each of these four genomes, with the exception of Watson, for which only 62% of the claimed 

variant data was available (Table 1). In the case of Watson, it can be inferred both from pub-

lished claims and available data that the majority of missing nsSNPs are homozygous. Also con-

sistent with these previous reports, novel nsSNPs are predominantly heterozygous; these results 

confirm that novel SNPs tend to be rare, since rare alleles are much more likely to be heterozy-

gous. It can also be observed that the number of homozygous C/C and G/G variants is consis-
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tently 60–70% more than the number of homozygous A/A and T/T variants. As these genomes 

have been sequenced using different methods, these results are unlikely to be a product of sys-

tematic bias in any particular sequencing protocol, and could be another characteristic that re-

mains consistent across genomes aligned against the reference sequence. 

Trait-o-matic interpretation of Watson’s genome (Supplemental Interactive Figure S1; 

Supplemental Figure S1) replicated 9 of 11 variants claimed to be associated with disease or 

other phenotypes; the remaining two were absent in the original data file retrieved. However, 8 

of 9 trait-associated alleles were either major alleles or had population frequencies greater than 

0.05 among European HapMap samples; the remaining variant (associated with retinitis pigmen-

tosa) had no population frequency information and may be rare. It is notable that Wheeler et al. 

have claimed, based on the retrieval of these variants from the HGMD subset of the genome, that 

previous estimates predicting fewer than ten lethal equivalents in each person must be too low; 

however, these supposedly highly penetrant disease-causing alleles are questionable. Also of in-

terest within the Trait-o-matic interpretation of Watson’s genome is one variant in the per-

oxisome proliferator-activated receptor alpha (PPARA) gene associated with increased serum 

levels of total and LDL cholesterol in men, apolipoprotein B (apoB) in men and women, and 

apolipoprotein C3 (apoC3) in men,48 but not associated with diabetes.49 This particular trait-

associated allele is rare according to HapMap data and, although not lethal, appears to be mean-

ingfully associated with lipid metabolism. 

Again in the case of Venter’s genome (Supplemental Interactive Figure S2; Supple-

mental Figure S2), the authors’ claimed variants of interest were replicated by Trait-o-matic; the 

chief difference between Trait-o-matic interpretation and results from Ng et al. concerned the 

A171T and D444H alleles encoded in the biotinidase (BTD) gene, associated with biotinidase 
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deficiency.50 In both cases, HapMap data claim that the trait-associated allele is extremely rare, 

contradicted by studies cited in Ng et al.; this discrepancy is likely due to small sample size in 

HapMap. Furthermore, variant data claim Venter as homozygous for H444, which would suggest 

that he is affected, while Ng et al. remark that Venter is in fact heterozygous, presumably on the 

basis of resequencing results. This example demonstrates how low coverage in a sequence cre-

ates issues for interpretation and requires targeted resequencing for confirmation. Also of interest 

in Venter’s genome is a homozygous variant in the protoporphyrinogen oxidase (PPOX) gene 

associated with recessive porphyria variegata in OMIM. The trait-associated allele is somewhat 

rare in the European population, according to HapMap data, and has been erroneously associated 

with porphyria because it was found in affected individuals with a chain-termination or splice 

mutation in cis, but is itself located in a region poorly conserved between species.51 Hence, 

manual review of the literature confirms that the subject should not be affected. 

In the YH genome, Trait-o-matic replicated the variant associated with recessive deafness 

(Supplemental Interactive Figure S3; Supplemental Figure S3), the allele frequency of which 

was not available from HapMap for Asian populations. Of interest among variants shortlisted by 

Trait-o-matic are two that are associated with recessive congenital insensitivity to pain with an-

hidrosis (CIPA) according to one source,52 but are rare neutral polymorphisms according to an-

other.53 In any case, it is not expected that YH should be affected as a heterozygote, although the 

possibility of this allele being a lethal variant carried by YH is of interest. Meanwhile, in Trait-o-

matic interpretation of the Yoruba genome (Supplemental Interactive Figure S4; Supplemen-

tal Figure S4), we noted a variant in the potassium voltage-gated channel, Isk-related family, 

member 2 (KCNE2) gene associated with susceptibility to acquired long QT syndrome. This 

variant had no associated information in either HapMap or dbSNP, though at least one study has 
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identified its presence in 3% of healthy black subjects.54 The degree to which arrhythmia sus-

ceptibility may be affected by this variant is hence somewhat unclear, although our review of the 

literature suggests that clinical follow-up would be appropriate. 

On the basis of these Trait-o-matic results, we are compiling additional information and 

observations on these four genomes, including clinical recommendations, as part of a forth-

coming report on all public individual genomes. 

To score nsSNPs not found in database sources, Trait-o-matic uses a simple scoring sys-

tem based on a substitution matrix to minimize computational demands, inferring that a serious 

mutation—a non-conservative or nonsense mutation—in a gene associated with a particular dis-

ease is more likely to be deleterious. Of the two commonly used sets of substitution matrices, I 

have chosen to use a BLOSUM (block substitution matrix) over a PAM (point accepted muta-

tion) matrix because the latter is asymmetric. The presence of symmetry obviates consideration 

of which allele at a polymorphic locus is ancestral; this is not difficult for novel mutations (the 

reference allele can reasonably be taken as ancestral) but requires additional database queries for 

common polymorphisms. Of the block substitution matrices, I have used the highest threshold of 

sequence similarity (BLOSUM100), since we are only examining variants within the same spe-

cies. I have also taken the negative of the matrix in answer to the intuitive notion that less con-

servative amino acid changes ought to have a higher score, since these scores are used as a 

measure of potential deleterious effect. Though this matrix-based procedure assigns integer 

values normalized so that stop codons have a score of 10, I make no assumption about any linear 

progression of phenotypic effect between integer increments, and hence use non-parametric 

methods to assess the effectiveness of this scoring method in discriminating benign and deleteri-

ous mutations. 
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As expected, pairwise Mann-Whitney U tests give that score distributions do not differ 

significantly for nsSNPs in the four complete genomes. Two pairwise tests showed P < 0.05 (be-

tween the Venter and YH genomes (U = 4.75 × 107, n1 = 10,690, n2 = 8742, P = 0.0437 with 

continuity correction, two-tailed) and between the Venter and Yoruba genomes (U = 5.26 × 107, 

n1 = 10,690, n2 = 9650, P = 0.0118 with continuity correction, two-tailed)), but these results are 

not significant after Bonferroni correction for multiple hypotheses. However, the score distribu-

tion of any complete genome does differ significantly with that of aggregated PGP exome data 

(the least significant P-value arising between the Venter genome and the PGP, U = 3.62 × 107, 

n1 = 10,690, n2 = 7189, P = 3.36 × 10−11 with continuity correction, two-tailed). Also as ex-

pected, the OMIM dataset is shifted significantly towards higher matrix-based scores as com-

pared with any genome; a representative test between OMIM and Watson’s genome gives 

U = 2.10 × 107, P < 2.2 × 10−16 with continuity correction, one-tailed (Figure 4a–f). 

Since nearly all OMIM alleles are deleterious and ~80% of nsSNPs in an individual’s ge-

nome are estimated to be benign,44 I use OMIM alleles as positive controls and Watson’s alleles 

negative controls to estimate true and false positive rates for the use of matrix-based scores in 

predicting deleterious alleles. In this case, plotting these data yields an area under the receiver 

operating characteristic (ROC) curve of 0.695, and setting a decision boundary at ≥ +3 yields a 

maximal difference of 29.1% between true and false positive rates (Figure 4g). As deleterious 

alleles are correlated with higher scores, one expects that a true set of negative controls would 

show lower classification error. 
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Figure 4. BLOSUM-based scoring of nsSNPs. (a–f) Score histograms for individual genomes, ag-
gregated PGP data, and OMIM. (g) ROC curve, taking Watson’s nsSNPs as benign variants and 
OMIM as deleterious (area = 0.695). (h) ROC curves using only variants mapped to dbSNP. 
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To compare the effectiveness of BLOSUM100-based scoring with that of SIFT, I re-

trieved precomputed SIFT predictions for Watson and OMIM nsSNPs. As the most efficient 

method of accessing these predictions is through submission of dbSNP rs IDs via a web inter-

face, I limited positive controls to OMIM alleles mapped directly to dbSNP rs IDs (in Omim-

VarLocusIdSNP) and negative controls to Watson alleles found in dbSNP. For additional com-

parison, ROC curves were plotted for SIFT predictions, BLOSUM100-based scores, MAF-based 

scores, and summed BLOSUM100/MAF-based scores based on this set of positive and negative 

controls. To generate MAF-based scores, I consider the lowest MAF across aggregated HapMap 

populations and apply a logarithmic function f (MAF) such that f (0.5) = −10, f (0.05) = 0, 

f (0.005) = 10, to a maximum score of 15. I presume that polymorphisms at loci with no fre-

quency data are rare, and assign them a score of 15. This function was somewhat arbitrarily cho-

sen so that I could assign approximately equal weight to the BLOSUM100-based score and 

MAF-based score by addition, and was devised without the use of a training set for parameter 

optimization. Examination of ROC curves shows that SIFT (area under curve = 0.848) had the 

highest predictive accuracy and BLOSUM100-based scores had the lowest (area = 0.659), but 

summed BLOSUM100/MAF-based scoring dramatically increased accuracy (area = 0.787) and 

was more effective than MAF-based scoring alone (Figure 4h). 

PolyPhen claims still higher accuracy than SIFT,45 but because PolyPhen results are 

qualitative only (benign, possibly damaging, probably damaging, unknown), an ROC curve can-

not be generated. Still, if we accept PolyPhen’s claimed true positive rate of 82% and false posi-

tive rate of 8%, the BLOSUM100-based scoring method clearly provides inferior results for pre-

dicting deleterious alleles, but in exchange for significant increases in computational speed. It 

remains to be seen if adjusting MAF-based scoring or its combination with BLOSUM100-based 
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scoring using training sets can push the accuracy of this simple algorithm beyond that of SIFT 

and PolyPhen. 

Reference sequence. I determined phenotypes associated with alleles in the reference se-

quence largely through data queries to OMIM and SNPedia, but could not rely on automated 

Trait-o-matic interpretation because the utility compares genome data to the reference. An at-

tempt to interpret the reference sequence via Trait-o-matic correctly yielded no results. 

Tabulation of UCSC data revealed that there exist 89,467 claimed nonsynonymous SNPs 

listed in dbSNP (build 129, retrieved February 2009). Of these, 69,770 (78.0%) were confirmed 

to be single base-pair alleles within 26,662 coding sequences listed in UCSC data (“refFlat” 

table) as of June 2008; 22 entries were malformed because the start and end coordinates provided 

for these alleles were not separated by 1 bp as claimed (one allele had start and end coordinates 

100 bp apart, and others had zero or negative length); 19,675 (22.0%) were discarded because 

they were in a putative or recently characterized coding region not listed in “refFlat.” 

The majority of OMIM entries implicated by reference alleles are apparently benign. In 

general, the term “polymorphism” is used to describe an allelic variant in OMIM only when the 

variant is apparently benign and/or very common. While only 103 of 10,482 parsed OMIM al-

lelic variants (less than 1%) include the term “polymorphism,” 17 of 88 (19%) nsSNPs, corres-

ponding to 16 of 77 (21%) unique OMIM allelic variants, emerge from this OMIM analysis of 

the reference sequence described explicitly as polymorphisms. An additional 28 nsSNPs corres-

pond to haemoglobin polymorphisms listed by name, while two more are associated with 

skin/hair/eye pigmentation and one with phenylthiocarbamide (PTC) tasting ability (Supplemen-

tal Table S1). 
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Table 2. Homozygous genotypes for the reference allele extracted from SNPedia. (a) SNPedia en-
tries near ABCB1. (b) SNPedia entries near OCA2. 

a. 
 
Genotype dbSNP rs ID Phenotype 

chr7:86987858(C;C) rs2235067 7x more likely to respond to certain antidepressants 

chr7:86990039(A;A) rs4148740 7x more likely to respond to certain antidepressants 

chr7:86998497(A;A) rs2032583 7x less likely to respond to certain antidepressants 

chr7:86998554(A;A) rs2032582 6.7x risk (Crohn’s disease) 

chr7:86998985(T;T) rs4148739 7x less likely to respond to certain antidepressants 

chr7:86999456(T;T) rs11983225 7x more likely to respond to certain antidepressants 

chr7:87002922(A;A) rs10248420 7x less likely to respond to certain antidepressants 

chr7:87003686(C;C) rs2235040 7x more likely to respond to certain antidepressants 

chr7:87007292(C;C) rs12720067 7x more likely to respond to certain antidepressants 

chr7:87017537(A;A) rs1128503 likely to require more methadone during heroin withdrawal 

chr7:87037500(C;C) rs2235015 7x less likely to respond to certain antidepressants 
 
b. 
 
Genotype dbSNP rs ID Phenotype 

chr15:25903913(C;C) rs1800407 blue/grey eyes more likely 

chr15:25933648(G;G) rs1800401 blue/grey eyes possible 

chr15:26017833(A;A) rs7495174 blue/grey eyes more likely  

chr15:26030454(C;C) rs1129038 brown eye colour 

chr15:26032853(G;G) rs12593929 brown eye colour 

chr15:26039213(A;A) rs12913832 brown eye colour, 80% of the time 

chr15:26039328(C;C) rs7183877 blue eye colour if part of blue eye colour haplotype 

chr15:26101581(T;T) rs7170852 usually brown eye colour 

chr15:26126810(A;A) rs2238289 blue eye colour if part of blue eye colour haplotype 

chr15:26167797(T;T) rs2240203 blue eye colour if part of blue eye colour haplotype 

chr15:26175874(A;A) rs11631797 usually brown eye colour 

chr15:26186959(T;T) rs916977 usually brown eye colour 

chr15:30782048(T;T) rs4779584 1.70x risk for colorectal cancer 

chr15:46213776(A;A) rs1426654 probably light-skinned, European ancestry 
 

Of 1575 genotype entries at 787 unique loci derived from semi-automated curation of 

SNPedia data, 315 concerned homozygous genotypes for the reference allele (Supplemental 

Table S2), representing 40.0% of loci in the data table. Of interest among these homozygous 

genotypes (Table 2), 12 located in or near the oculocutaneous albinism II (OCA2) gene form part 

of a haplotype associated with eye colour; six of these claim blue eye colour, while six—

including those apparently most strongly associated with eye colour55, 56—claim brown. Another 

nearby genotype in the solute carrier family 24, member 5 (SLC24A5) gene claims light-skinned, 
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European ancestry. Additionally, nine genotypes are located in the ATP-binding cassette, sub-

family B (MDR/TAP), member 1 (ABCB1) gene which have been associated with response to 

antidepressant treatment;57 of these, four claim a sevenfold reduced likelihood of responding to 

certain treatments, while five claim a sevenfold increased likelihood. These data are to be inter-

preted with the caveat that the reference sequence itself is haploid; hence, a hypothetical individ-

ual bearing this sequence could be either affected or a carrier for any recessive phenotype. In ad-

dition, these data are of limited conclusiveness because they are drawn from a selective list of 

genotype–phenotype correlations based largely off of GWAS results. 

Returning to more serious phenotypes from OMIM (Table 3), examination of OMIM de-

scriptive text demonstrated two variants for which errors present in the source material flagged 

benign alleles. One missense mutation implicated in glaucoma was listed with incorrect sum-

mary information in OMIM, with benign (Glu) and deleterious (Lys) residues reversed, while 

summary information for a silent mutation contained notation indicating a Gly→Gly “missense,” 

as a result of which every allele corresponding to glycine at that position would be incorrectly 

flagged as deleterious. Of the remaining reference alleles with potentially deleterious effects, 

several suggest that this hypothetical individual could be a carrier for autosomal recessive neu-

rosensory deafness58 and severe combined immunodeficiency disorder (SCID),59 although popu-

lation frequencies for homozygous genotypes associated with the latter suggest that either pen-

etrance is very low or the genotype–phenotype association presented in the literature is spurious. 

In addition, five potentially deleterious alleles were parts of compound mutations for which other 

loci were not flagged in the reference sequence. Two other alleles were associated with thyroid 

carcinoma, though these associations were both reported by the same source,60 lacked corrobo-

rating reports, and implicated the overwhelmingly major alleles at both loci; similarly, an asso-
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ciation with hawkinsinuria61 (an autosomal dominant disease) implicated an allele also found in 

unaffected controls and present with high frequency in the general population. 

Table 3. Susceptibilities and diseases in OMIM associated with the reference allele. Disease sus-
ceptibilities are summarized as such in OMIM, with the exception of two that are listed as diseases 
but do not appear to be causative. Abbreviations: IDDM, insulin-dependent diabetes mellitus; AD, 
Alzheimer disease; ARMD, age-related macular degeneration; HBV, hepatitis B virus (persis-
tence); SLE, systemic lupus erythematosus; NIDDM, non-insulin-dependent diabetes mellitus; 
RA, rheumatoid arthritis; SCID, severe combined immunodeficiency disorder. 

Susceptibilities: 
Asthma (4) 
IDDM (3) 
AD (2) 
ARMD (2) 
Atopy (2) 
HBV (2) 
Obesity (2) 
Schizophrenia (2) 
SLE (2) 
Autism 
Coeliac disease 
Congestive heart failure 
Coronary spasm 
Diabetes 
Glomerulopathy 
Hepatic adenoma 
Hypertension 
Ischaemic heart disease 
Ischaemic stroke 
Myocardial infarction 
Nephrolithiasis 
NIDDM 
Parkinson 
RA 
Thyroiditis 

Diseases: 
Arthropathy (compound mutation) 
Bardet-Biedl syndrome (compound mutation) 
Deafness (AR) 
DPYD deficiency (compound mutation) 
Glaucoma (incorrect; entered into OMIM with benign and 

affected amino acids exchanged) 
Hawkinsinuria (high population frequency, found also in 

controls) 
Progeria (incorrect; entered into OMIM as amino acid change, 

but in fact silent mutation) 
Sandhoff disease (compound mutation) 
SCID (2; AR) 
Thrombotic thrombocytopaenic purpura (compound muta-

tion) 
Thyroid carcinoma [susceptibility?] (2, same source, lacking 

corroborating reports; overwhelmingly the major allele) 
 

 

Among disease susceptibilities present in OMIM, several were flagged for the reference 

sequence, including asthma (4 variants); insulin-dependent diabetes mellitus (IDDM, 3 variants); 

age-related macular degeneration (ARMD), Alzheimer disease, atopy, hepatitis B virus (HBV) 

persistence, and obesity (2 variants each). While these data in no way translate meaningfully to a 

quantitative measure of risk for these complex traits, they may be useful at least as a rough base-

line or guide to the kinds and quantities of complex disease susceptibilities a typical individual 

genome may reveal. Note also, for example, that the alleles associated with HBV persistence are 

major alleles in the population; in such cases, it may be more accurate instead to consider the 

minor alleles as conferring protection. 
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Discussion 

Interpretation. Examination of four genomes has suggested that certain properties are 

common across human genomes, including ratios of novel to total, homozygous to heterozygous, 

and homozygous C/G to homozygous A/T nsSNPs. Comparison of these genomes has also 

shown a characteristic distribution when nsSNPs are scored based on BLOSUM100 values for 

corresponding amino acid changes. Hence, when aggregated partial exome data from the PGP 

were scored in the same manner, the distribution of these scores was clearly different from that 

of nsSNPs from any complete set of coding sequences. 

Furthermore, the use of a variety of data sources, including several formatted specifically 

for this project, has replicated phenotypes previously found by the authors of these genomes and 

has helped in critically evaluating these claims through HapMap frequency data and cross-

references to literature. In addition, interpretation of each genome has yielded results not dis-

cussed by the genome authors themselves, including several that may be of clinical interest. 

These interpretations have also made clear, however, that data available in any curated database, 

regardless of how recently updated, will be subject to the limitations of the literature source ma-

terial. As in the case of CIPA-associated alleles in YH, where there is unclear evidence or ongo-

ing debate about a genotype–phenotype association, neither inclusion nor exclusion of such in-

formation correctly expresses its status. In these situations, additional annotation, manual inspec-

tion, and a human interpreter’s clinical or scientific judgment are required beyond what auto-

mated processes can accomplish. 

Finally, Trait-o-matic includes a simple algorithm intended to form the beginnings of a 

utility to generate hypotheses for statistical follow-up in association studies. Drawing upon 
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BLOSUM100-based scoring, this algorithm attempts to identify variants that are likely to have 

the largest effect on protein function, along with a description of one or more potential pheno-

types associated with altered protein function drawn from OMIM. The use of a noisy set of posi-

tive and negative controls to evaluate the effectiveness of such a simple algorithm roughly 

shows, as expected, that simplicity and computational speed come at the cost of accuracy. 

Somewhat remarkable, however, is the demonstration that accuracy can be dramatically im-

proved by considering allele frequency alongside functional characteristics, which suggests an 

avenue for further exploration. 

Future directions. It goes without saying that many additional areas of improvement for 

Trait-o-matic can be contemplated. For the purposes of clinical interpretation, the use of ma-

chine-readable data more accurate and evidence-based than what is available today is critical for 

increasing the informative content of these genomes. The currently available OMIM associations 

between genes and traits are only a selected portion of the associations available in the literature. 

While parsing OMIM has already increased fivefold the amount of freely available data for this 

purpose, a still richer database would be useful for our utility. One feasible method to begin the 

generation of this database would entail automated parsing of the literature; others have already 

devoted effort to this task, using natural language processing (NLP) and other methods to recon-

struct semantic meaning from free text.62-65 

In light of work presented here using OMIM and SNPedia, however, a literature-based 

corpus may not bring as radical an improvement as expected. SNPedia represents one approach 

to compiling a knowledgebase, focusing on GWAS results that largely emphasizes the “common 

disease, common variants” approach. As a result, a relatively small collection of several thou-

sand variants yields hundreds of results for each genome, but their association with traits will 
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often be of low penetrance and/or of very small effect—the cumulative effect of which for any 

one genome may be potentially contradicting effects on phenotype with unknown interactions 

among them. By contrast, OMIM represents a larger but more selective knowledgebase of alleles 

of interest. While some of these are common variants, often from GWAS data, the rarest alleles 

have only been reported once or a handful of times; these variants would be found infrequently 

in genomes submitted for interpretation, and very little corroborating evidence supports any 

claim presented about them even when they are found in a submitted genome. As a result, this 

fairly large database of tens of thousands of variants often yields fewer than 100 results for each 

genome, not all of which are informative. As we delve into the literature to find less well dis-

seminated variants, we can expect that many will have still weaker associations with their cor-

responding phenotypes, or still smaller population frequency. Hence, a severalfold increase in 

underlying database size may increase only slightly the informative content retrievable for any 

particular individual’s genome. 

Second, the use of more advanced logic to evaluate SNPs would improve the quality of 

phenotype inferences even without large increases in the amount of underlying data. Although 

Trait-o-matic calculations are fairly rudimentary at the present time due to considerations of 

scale, the presentation of a general list of phenotype inferences is not always the most salient an-

swer to questions that can be asked about an individual genome. Instead, more specific queries, 

tailored to examine a limited array of mutations or mutations in a limited set of genes, could be 

useful in answering questions about particular phenotypes. One might then envision the use of 

Boolean expressions (as are implemented in search engines) to explore in detail such questions 

as an individual’s genetic predisposition to Alzheimer disease. Recently, SNPedia has begun 

cataloguing Boolean expressions called “genosets” for just this purpose; for example, one ex-
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pression claimed to be associated with a roughly sixfold increase in Alzheimer disease risk in-

volves two loci and is represented with the notation and(rs2071746(T;T),rs242557(A;A)). One 

might also use Bayesian statistics instead of simply Boolean logic. For example, Trait-o-matic 

could automatically examine ancestry-informative markers (AIMs), some of which are already 

included among SNPedia entries, to arrive at a Bayesian estimate of biogeographical ancestry;66 

anticipating this possibility, I have suggested the inclusion of a small number of AIMs in upcom-

ing exome subsets to be sequenced for PGP participants. 

Improvement to the underlying literature is, of course, still another method of improving 

clinical utility, and it has not escaped our attention that data submitted to Trait-o-matic itself can 

be used for such purposes. The matrix-based method of scoring is only a first effort at construct-

ing a tool for hypothesis generation with the aim of aiding statistical analysis of genotype–

phenotype associations. One might envision the inclusion of analysis toolsets for GWAS67, 68 to 

test subsets of variants that are most predicted to be deleterious across all genomes for which 

consent is given. 

Additionally, the ability to deposit any results obtained via NLP or association testing in 

a semantic, openly accessible location such as SNPedia would both enhance community partici-

pation in these efforts and promote independent verification of claims, and would overcome the 

limitations of small sample size and ascertainment bias found in current datasets as personal ge-

nome technologies become more widespread. Ideally, then, Trait-o-matic would be situated in 

such a way that it can communicate bidirectionally with the data sources from which it draws 

inferences (Figure 5). 



37 

 

Figure 5. Proposed data flow for information exchange between Trait-o-matic, an interpreter, and 
a wiki-based source, an evidence-based repository for curated information. Dashed lines are not 
yet implemented. 

Ethics and society. Finally, there is a need to confront, not simply from a scientific per-

spective, the question of what variants should or should not be presented to stakeholders in the 

genome sequencing process. A general expectation—and indeed fear—regarding personal ge-

nomes is that they will be useful in revealing accurate or deeply intimate information about indi-

viduals, voluntarily or not. Some concerns regarding this emerging technology, then, include 

whether better genome sequencing could lead to new forms of discrimination against those found 

to have disease or behavioural predispositions, or whether a more comprehensive catalogue of 

risks could lead to unwary consumers rushing to obtain a barrage of tests and preventive treat-

ments for illnesses they will never face.69, 70 For now, high costs and limitations on what we are 

capable of interpreting mean that the full social impact of genome sequencing has yet to be real-

ized, but hints of potential can already be discerned in a project such as this one. 

For instance, results presented here demonstrate that a utility such as Trait-o-matic is 

capable of identifying Mendelian conditions for which an individual is merely a carrier, as well 

as complex traits for which a heterozygous individual is expected to experience a much milder 

phenotype than a homozygote. While previously some prospective parents have had to face diffi-

cult choices because of their status as carriers for certain Mendelian and well-defined diseases, it 
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is possible that nearly every prospective parent in future generations could be confronted with a 

list of alleles they possess that have been correlated with minor increases in risk for serious com-

plex diseases if homozygous or in trans with certain other alleles. Hence, negative effects of ge-

nome interpretation may include complicating already complex considerations surrounding 

childbearing decisions, as well as the potential of increasing social stigma for those who choose 

to forgo—or simply cannot afford—the genetic screening required. 

In short, the question of how personal genomes are made available to consumers is a 

topic in need of consideration by policymakers and society at large. We should hope that, with 

the evolution of social and scientific approaches, our improved understanding of how to interpret 

our genetic inheritance can be applied positively to the advancement of human health and wel-

fare. 

 
Supplemental information for this thesis is available at ‹http://thesis.diploid.ca/›. 
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